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he Monte Carlo method is a sta-

tistical sampling technique that

over the years has been applied

successfully to a vast number of
scientific problems. Although the com-
puter codes that implement Monte Carlo
have grown ever more sophisticated, the
essence of the method is captured in some
unpublished remarks Stan made in 1983
about solitaire.

“The first thoughts and attempts [
made to practice [the Monte Carlo
method] were suggested by a question
which occurred to me in 1946 as I was
convalescing from an illness and play-
ing solitaires. The question was what
are the chances that a Canfield solitaire
laid out with 52 cards will come out
successfully? After spending a lot of
time trying to estimate them by pure
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combinatorial calculations, I wondered
whether a more practical method than
*abstract thinking” might not be to

lay it out say one hundred times and
simply observe and count the number
of successful plays. This was already
possible to envisage with the begin-
ning of the new era of fast computers,
and 1 immediately thought of problems
of neutron diffusion and other ques-
tions of mathematical physics, and more
generally how to change processes de-
scribed by certain differential equations
into an equivalent form interpretable

as a succession of random operations.
Later...[in 1946, 1] described the idea
to John von Neumann and we began to
plan actual calculations.”

Von Neumann was intrigued. Statis-
tical sampling was already well known
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in mathematics, but he was taken by
the idea of doing such sampling using
the newly developed electronic comput-
ing techniques. The approach seemed es-
pecially suitable for exploring the behav-
ior of neutron chain reactions in fission
devices. In particular, neutron multiplica-
tion rates could be estimated and used to
predict the explosive behavior of the var-
ious fission weapons then being designed.

In March of 1947, he wrote to Rob-
ert Richtmyer, at that time the Theoretical
Division Leader at Los Alamos (Fig. 1).
He had concluded that “the statistical ap-
proach is very well suited to a digital
treatment,” and he outlined in some de-
tail how this method could be used to
solve neutron diffusion and multiplica-
tion problems in fission devices for the
case “of ‘inert’ criticality” (that is, ap-
proximated as momentarily static config-
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urations). This outline was the first for-
mulation of a Monte Carlo computation
for an electronic computing machine.

In his formulation von Neumann used a
spherically symmetric geometry in which
the various materials of interest varied
only with the radius. He assumed that
the neutrons were generated isotropically
and had a known velocity spectrum and
that the absorption, scattering, and fission
cross-sections in the fissionable material
and any surrounding materials (such as
neutron moderators or reflectors) could be
described as a function of neutron veloc-
ity. Finally, he assumed an appropriate
accounting of the statistical character of
the number of fission neutrons with prob-
abilities specified for the generation of 2,
3, or 4 neutrons in each fission process.

The idea then was to trace out the
history of a given neutron, using ran-
dom digits to select the outcomes of the
various interactions along the way. For
example, von Neumann suggested that
in the compution “each neutron is rep-
resented by [an 80-entry punched com-
puter| card ... which carries its character-
istics,” that is, such things as the zone of
material the neutron was in, its radial po-
sition, whether it was moving inward or
outward, its velocity, and the time. The
card also carried “the necessary random
values” that were used to determine at the
next step in the history such things as path
length and direction, type of collision, ve-
locity after scattering—up to seven vari-
ables in all. A “new” neutron was started
(by assigning values to a new card) when-
ever the neutron under consideration was
scattered or whenever it passed into an-
other shell; cards were started for several
neutrons if the original neutron initiated
a fission. One of the main quantities of
interest, of course, was the neutron mul-
tiplication rate—for each of the 100 neu-
trons started, how many would be present
after, say, 107®% second?

At the end of the letter, von Neumann
attached a tentative “computing sheet”
that he felt would serve as a basis for

Los Alamaos Science Special Issue 1987

setting up this calculation on the ENJAC.
He went on to say that “it seems to me
very likely that the instructions given on
this ‘computing sheet’ do not exceed the
‘logical’ capacity of the ENIAC.” He es-
timated that if a problem of the type he
had just outlined required “following 100
primary neutrons through 100 collisions
feach]...of the primary neutron or its de-
scendants,” then the calculations would
“take about 5 hours.” He further stated,
somewhat optimistically, that “in chang-
ing over from one problem of this cate-
gory to another one, only a few numeri-
cal constants will have to be set anew on
one of the ‘function table’ organs of the
ENIAC.”

His treatment did not allow “for the
displacements, and hence changes of ma-
terial distribution, caused by hydrody-
namics,” which, of course, would have
to be taken into account for an explo-
sive device. But he stated that “I think
that 1 know how to set up this problem,
too: One has to follow, say 100 neu-
trons through a short time interval Ag;
get their momentum and energy trans-
fer and generation in the ambient mat-
ter; calculate from this the displacement
of matter; recalculate the history of the
100 neutrons by assuming that matter is
in the middle position between its orig-
inal (unperturbed) state and the above
displaced (perturbed) state;. . . iterating in
this manner until a “self-consistent” sys-
tem of neutron history and displacement
of matter is reached. This is the treat-
ment of the first time interval Az. When
it is completed, it will serve as a basis
for a similar treatment of the second time
interval. .. etc., etc.”

Von Neumann also discussed the treat-
ment of the radiation that is generated
during fission. “The photons, too, may
have to be treated ‘individually’ and sta-
tistically, on the same footing as the neu-
trons. This 1s, of course, a non-trivial
complication, but it can hardly consume
much more time and instructions than the
corresponding neutronic part. It seems

Monte Carlo

to me, therefore, that this approach will
gradually lead to a completely satisfac-
tory theory of efficiency, and ultimately
permit prediction of the behavior of all
possible arrangements, the simple ones as
well as the sophisticated ones.”

And so it has. At Los Alamos in 1947,
the method was quickly brought to bear
on problems pertaining to thermonuclear
as well as fission devices, and, in 1948,
Stan was able to report to the Atomic
Energy Commission about the applica-
bility of the method for such things as
cosmic ray showers and the study of the
Hamilton Jacobi partial differential equa-
tion. Essentially all the ensuing work on
Monte Carlo neutron-transport codes for
weapons development and other applica-
tions has been directed at implementing
the details of what von Neumann out-
lined so presciently in his 1947 letter (see
“Monte Carlo at Work”).

n von Neumann’s formulation of the
Ineutron diffusion problem, each neu-
tron history is analogous to a single game
of solitare, and the use of random num-
bers to make the choices along the way
is analogous to the random tum of the
card. Thus, to carry out a Monte Carlo
calculation, one needs a source of ran-
dom numbers, and many techniques have
been developed that pick random num-
bers that are uniformly distributed on the
unit interval (see “Random-Number Gen-
erators”). What is really needed, how-
ever, are nonuniform distributions that
simulate probability distribution functions
specific to each particular type of de-
cision. In other words, how does one
ensure that in random flights of a neu-
tron, on the average, a fraction ¢ */*
travel a distance x /A mean free paths or
farther without colliding? (For a more
mathematical discussion of random vari-
ables, probability distribution functions,
and Monte Carlo, see pages 68~73 of
“A Tutorial on Probability, Measure, and
the Laws of Large Numbers.”)

The history of each neutron is gener-
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DECISION POINTS
IN MONTE CARLO

Fig. 2. A schematic of some of the de-
cisions that are made to generate the
“history” of an individual neutron in a
Monte Carlo calculation. The nonuniform
random-number distributions g used in
those decisions are determined from a
variety of data.
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ated by making various decisions about
the physical events that occur as the neu-
tron goes along (Fig. 2). Associated with
each of these decision points is a known,
and usually nonuniform, distribution of
random numbers g that mirrors the prob-
abilities for the outcomes possible for the
event in question. For instance, return-
ing to the example above, the distribu-
tion of random numbers g, used to de-
termine the distance that a neutron trav-
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els before interacting with a nucleus is
exponentially decreasing, making the se-
lection of shorter distances more proba-
ble than longer distances. Such a distri-
bution simulates the observed exponen-
tial falloff of neutron path lengths. Simi-
larly, the distribution of random numbers
gk used to select between a scattering,
a fission, and an absorption must reflect
the known probabilities for these differ-
ent outcomes. The idea is to divide the

unit interval (0, 1) into three subintervals
in such a way that the probability of a
uniform random number being in a given
subinterval equals the probability of the
outcome assigned to that set.

1n another 1947 letter, this time to Stan
Ulam, von Neumann discussed two tech-
niques for using uniform distributions of
random numbers to generate the desired
nonuniform distributions g (Fig. 3). The
first technique, which had already been
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ANOTHER VON NEUMANN LETTER

Fig. 3. In this 1947 jetter to Sian Ulam, von
Neumann discusses two methods for gen-
erating the nonuniform distributions of ran-
dom numbers needed in the Monte Carlo
method. The second paragraph summarizes
the inverse-function approach in which (xi)
represents the uniform distribution and (¢)
the desired nonuniform distribution. The
rest of the letter describes an alternative ap-
proach based on iwo unitorm and indepen-~
dent distributions: (xi ) and (yi). In this lat-
ter approach a value x' from the first set is
accepted when a value yi from the second
set satisfies the condition yi < f(xi), where
f(gi ) d¢ is the density of the desired distri-
bution function. (It should be noted that in
von Neumann’s example for forming the ran-
dom pairs £ = sin x and n = oS X, he proba-
bly meant to say that x is equidistributed be-
tween 0 and 360 degrees (rather than “300).
Also, his notation for the tangent function is
“tg,” so that the second set of equations for
¢ and 7 are just half-angle (y = x /2) trigono-
metric identities.)
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proposed by Stan, uses the inverse of the
desired function f = g~!. For example,
to get the exponentially decreasing distri-
bution of random numbers on the interval
(0, 00) needed for path lengths, one ap-
plies the inverse function f(x) = —Inx to
a uniform distribution of random numbers
on the open interval (0, 1).

What if it is difficult or computation-
ally expensive to form the inverse func-
tion, which is frequently true when the
desired function is empirical? The rest of
von Neumann’s letter describes an alter-
native technique that will work for such
cases. In this approach fwo uniform and
independent distributions (x') and (y*) are
used. A value x’ from the first set is
accepted when a value y' from the sec-
ond set satisfies the condition y' < f(x"),
where f(£')d¢ is the density of the de-
sired distribution function (that is, g(x) =
[ f(x)dx).

This acceptance-rejection technique of
von Neumann’s can best be illustrated
graphically (Fig. 4). If the two numbers
x' and y’ are selected randomly from the
domain and range, respectively, of the
function f, then each pair of numbers rep-
resents a point in the function’s coordi-
nate plane (x',y’). When y' > f(x') the
point lies above the curve for f(x), and xt
is rejected; when y' < f(x') the point lies
on or below the curve, and x' is accepted.
Thus, the fraction of accepted points is
equal to the fraction of the area below the
curve. In fact, the proportion of points se-
lected that fall in a small interval along
the x-axis will be proportional to the av-
erage height of the curve in that interval,
ensuring generation of random numbers
that mirror the desired distribution.

fter a series of “games” have been
Aplayed, how does one extract mean-
ingful information? For each of thou-
sands of neutrons, the variables describ-
ing the chain of events are stored, and this
collection constitutes a numerical model
of the process being studied. The collec-
tion of variables is analyzed using sta-
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THE ACCEPTANCE-REJECTION
METHOD

Fig. 4. If two independent sets of random
numbers are used, one of which (xi) ex-
tends uniformly over the range of the distri-
bution function f and the other (yi) extends
over the domain of f, then an acceptance-
rejection technique based on whether or not
yi < f(xi) will generate a distribution for
(xf) whose density is f(xi) dx’.

Reject xy since yy > fxy).

\ (x4, ¥1)
f(x)

/

. (X2?YZ)

Accept xp since y2 < f(xe).

X
tistical methods identical to those used
to analyze experimental observations of
physical processes. One can thus extract
information about any variable that was
accounted for in the process. For exam-
ple, the average energy of the neutrons at
a particular time is calculated by simply
taking the average of all the values gen-
erated by the chains at that time. This
value has an uncertainty proportional to
VV /(N — 1), where V is the variance
of, in this case, the energy and N is the
number of trials, or chains, followed.

It is, of course, desirable to reduce sta-
tistical uncertainty. Any modification to
the stochastic calculational process that
generates the same expectation values but
smaller variances is called a variance-

reduction technique. Such techniques
frequently reflect the addition of known
physics to the problem, and they reduce
the variance by effectively increasing the
number of data points pertinent to the
variable of interest.

An example is dealing with neutron ab-
sorption by weighted sampling. In this
technique, each neutron is assigned a unit
“weight” at the start of its path. The
weight is then decreased, bit by bit at each
collision, in proportion to the absorption
cross section divided by the total collision
cross section. After each collision an out-
come other than absorption is selected by
random sampling and the path is contin-
ued. This technique reduces the variance
by replacing the sudden, one-time process
of neutron absorption by a gradual elim-
ination of the neutron.

Another example of variance reduction
is a technique that deals with outcomes
that terminate a chain. Say that at each
collision one of the alternative outcomes
terminates the chain and associated with
this outcome is a particular value x, for
the variable of interest (an example is
X being a path length long enough for
the neutron to escape). Instead of col-
lecting these values only when the chain
terminates, one can generate considerably
more data about this particular outcome
by making an extra calculation at each
decision point. In this calculation the
know value x; for termination is multi-
plied by the probability that that outcome
will occur. Then random values are se-
lected to continue the chain in the usual
manner. By the end of the calculation,
the “weighted values” for the terminat-
ing outcome have been summed over all
decision points. This variance-reduction
technique is especially useful if the prob-
ablity of the alternative in question is low.
For example, shielding calculations typi-
cally predict that only one in many thou-
sands of neutrons actually get through the
shielding. Instead of accumulating those
rare paths, the small probabilities that a
neutron will get through the shield on its
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